联系我们 | 网站地图 | English | 中国科学院
首页 机构概况 科研成果 研究队伍 国际交流 院地合作 研究生教育 创新文化 党群园地 科学传播 信息公开
机构概况
所况简介
所长致辞
现任领导
历任领导
学术委员会
学位委员会
组织机构
历史沿革
院所风貌
联系方式
研究室
资源化学研究室
材料物理与化学研究室
多语种信息技术研究室
环境科学与技术研究室
重点实验室
植物资源化学重点实验室
中国科学院特殊环境功能材料与器件重点实验室
电子信息材料与器件重点实验室
新型光电功能材料实验室
固体辐射物理实验室
新疆爆炸物安全科学重点实验室
现在位置:首页 > 研究所简报
新疆理化所2017年第十五期情况简报
2017-10-10 | 作者: | 【 】【打印】【关闭

2017年     第十五期

 

新疆理化所在类金刚石红外非线性光学材料方面获进展

    非线性光学材料在频率转换方面有着重要的应用。其中在中远红外波段,具有类金刚石结构的金属硫化物成为首选的变频材料,这是因为类金刚石材料具有本征的非中心对称结构,能够很好的满足非线性光学应用的必要条件。而且商业化的红外非线性光学材料主要为类金刚石材料,例如AgGaS2, AgGaSe2, and ZnGeP2,但它们均存在一些性能缺陷:低的激光损伤阈值和严重的双光子吸收,阻碍了它们的实际应用。因此,在类金刚石材料中继续探索新的具有优异性能(抗损伤与大倍频并存)的红外非线性光学材料成为材料研究的重要方向。 

  中国科学院新疆理化技术研究所新型光电功能材料实验室潘世烈研究团队近年来致力于新型红外非线性光学晶体材料的研发。通过前期的文献调研发现,通过调控四面体基元的链接方式,能够有效的来设计新型的四元类金刚石材料作为潜在的红外非线性光学材料。然而,到目前为止,含汞的四元类金刚石材料发现的较少,但引入汞元素进入晶体结构有助于提高材料的非线性光学系数,很好的改善材料性能。基于此,该团队研究人员优选Li-Hg-Ge-S体系为研究对象,设计和合成了一种新的红外非线性光学材料Li4HgGe2S7。该材料结晶于非中心对称空间群:Cc,观察其结构发现具有蜂窝状的二维层状结构和共定点链接的(Ge2S7)6-二聚体。值得注意的是,该材料的结构中含有由LiS4四面体相互链接形成的10圆环,有别于前期发现的4圆环和6圆环结构,该10圆环结构为首次在四元类金刚石材料中发现。性能测试表明该材料具有很好的光学性能,包括高的激光损伤阈值和大的倍频能力,很好的满足材料性能之间的平衡,能够消除商业化材料的性能缺陷,可作为潜在的优异红外非线性光学材料。 

  该研究结果作为back cover发表于《化学通讯》(Chemical Communications)。

  相关研究工作得到中科院西部之光项目、国家自然科学基金等项目资助。 

 

新疆理化所无铍无层状习性深紫外非线性光学晶体研究获进展

    探索满足深紫外透过-大倍频效应-较大双折射相互矛盾性能指标的深紫外(< 200 nm)非线性光学晶体是当前该领域亟待突破关键难点。通过材料结构性能关系研究,建立功能基元数据库、探索平衡性能之间相互制约的机制及原因,筛选并引入新的功能基团来平衡矛盾综合品质因子是突破深紫外用晶体的有效手段。 

  根据以上思路,中国科学院新疆理化技术研究所新型光电功能材料实验室潘世烈研究团队开展了系统研究。建立了典型硼酸盐晶体材料的结构与性能数据库,分析了硼酸盐晶体各项性能之间相互制约的原因,提出了一种新的材料设计策略。该策略通过引入基于材料模拟方法筛选出的一类[BOF]功能基团:(BO3F)4-(BO2F2)3-(BOF3)2-。研究发现,F-离子的引入增大了[BOF]基团的各向异性,可增大材料双折射、在获得大带隙的同时可以避免层状生长习性。研究人员选取了四个氟硼酸盐化合物,通过第一性原理进行理论模拟,评估了其结构和线性及非线性光学性能,筛选出Li2B6O9F2(LBOF)证实了提出的设计策略可行性。通过HSE06杂化泛函评估LBOF的带隙为8.05 eV,对应的紫外截止边为155 nm,理论计算评估的双折射值为0.07@1064 nm,最短相位匹配波长达到192 nm。并通过实验证明了Li2B6O9F2作为深紫外非线性光学晶体的优越性:可实现 266 nm倍频输出,其倍频效应达0.3BBO,一种很有潜力的深紫外非线性光学晶体。 

  该项研究工作首次提出了通过B-F剪裁三维网络结构获得较大双折射并保持低紫外截止边、大倍频效应的设计策略,成功筛选出一类综合品质因子优异的功能基团,并通过实验进行验证研究,筛选出在深紫外波段具有重要应用的非线性光学材料。该工作通过数据库建立-功能基元筛选-材料设计-材料制备方式实现了材料的有效制备,为设计功能材料提供了新的思路。

  相关研究成果以Very Important Paper (VIP)文章的形式发表在《德国应用化学》(Angew. Chem. Int. Ed.2017, 56, 3916–3919)上。  

    刊载上述首创性发现的文章在线发表后,短时间内即引起美国新闻周刊Chemical & Engineering News(C&EN)的高度重视。美国新闻周刊在第一时间以Nonlinear opticallaser materialavoids beryllium(《无铍非线性光学晶体材料》)为题目,以Science Concentrates点评了该项研究成果。 

  该研究工作得到基金委、科技部、中科院、教育部等单位的大力支持。 

 

新疆理化所在荧光Au纳米团簇研究方面取得进展

    发光金属团簇是一种由几个到几十个过渡金属原子(如AuAgCuPtPd等)组成,具有明显光致发光性质的小尺寸材料(粒径 < 3 nm)。发光金属团簇的性质介于原子金属和金属纳米粒子之间,是这两类物质的中间过渡态。金属团簇因其优异的光致发光性质、高活性的催化能力,近年来吸引了研究者们的广泛关注,在各类化学催化反应过程、生物和化学检测、荧光成像标记等领域表现出巨大的应用潜力和研究价值。然而,鉴于极小的尺寸产生的高表面活性,金属团簇极易聚集和氧化。因此,如何合成稳定并具有优异发光性能和催化能力的金属团簇,是一项具有一定难度的研究工作。 

  中国科学院新疆理化技术研究所环境科学与技术研究室王传义团队用一种硅烷偶联剂(3-巯基丙基三甲氧基硅烷)作为稳定剂兼还原剂,通过快速且有效的光还原方式制备尺寸、荧光可调的Au纳米团簇。可以简单地调节稳定剂和Au前驱体的比例调节团簇的发射波长,其变化范围为538–580 nm。另外,合成的Au纳米团簇具有相对较长的荧光寿命:34.0446.83 ns;同时,该团簇的荧光量子产率高达0.26–3.16%,随着发射波长的变化而变化。与体相金相比,该团簇具有特殊的电子结构,有类似于半导体的特性,如紫外-吸收光谱中出现吸收边的性质等。此外,所制备得到的Au纳米簇也具有一定的光催化能力,可以独立作为光催化剂参与光催化反应。在可见光的照射下,该团簇能有效促进亚甲基蓝的降解反应,60分钟的照射时间里亚甲基蓝的降解率高达95.6%。这个发现也进一步拓展了Au纳米簇在催化领域的应用范围。 

  相关研究成果发表在《纳米尺度》(Nanoscale)上并引起同行的广泛关注。该研究工作得到国家自然科学基金、中科院创新团队国际合作伙伴计划千人计划(新疆项目)等项目支持。 

 

新疆理化所揭示纳米铁基/石墨烯基类芬顿催化剂的催化机理

    石墨烯材料具有独特的物理和化学性质,在能源、催化和环境等领域有广阔的应用前景。近年来,铁基磁性纳米粒子因其价格低廉、可磁性分离、催化活性好等有点而被用于设计和制备非均相类Fenton催化剂。经典的芬顿 Fenton (Fe2+/H2O2) 反应可以产生高活性的羟基自由(•OH,然而它在降解有机污染物的应用中,由于催化剂很难进行回收再利用以及反应后产生大量的铁污泥需要进一步处理等问题而受到一定限制。 

  近日,中国科学院新疆理化技术研究所资源化学研究室研究员张亚刚带领其团队将Fe0Fe3O4 在纳米尺度同时均匀地负载到了还原氧化石墨烯(RGO)上,得到了可磁性分离、催化活性高,可多次重复利用的纳米催化剂(Fe0/Fe3O4-RGO),并将其作为非均相类Fenton催化剂用于降解水相中苯酚污染物。 

  在前期的研究工作中,张亚刚团队通过探究氧化石墨烯的还原过程, 并将其进行磁功能化,制备了不同还原程度的磁性还原氧化石墨烯材料,用于污染物双酚A的吸附,并揭示了氧化石墨烯的还原程度对双酚A的吸附动力学和吸附容量的影响 

  在此基础上,为了能在催化过程中实现催化剂可多次重复利用,科研人员以石墨烯为载体,在纳米尺度下将Fe0Fe3O4 均匀负载石墨烯上,制备了纳米铁基/石墨烯类芬顿催化剂(Fe0/Fe3O4-RGO),将其用于催化降解水中苯酚污染物。实验结果表明,所制备的纳米催化剂 Fe0/Fe3O4-RGO 具有优异的催化活性,30分钟即可将苯酚100%降解,催化剂具有优异稳定性,并且可以多次重复利用,五次催化循环后其对苯酚的去除效率依然可以达到93%。此外,催化剂也可简单快速地进行磁分离。 

  科研人员还揭示了纳米铁基/石墨烯类芬顿催化剂(Fe0/Fe3O4-RGO)独特的催化机理。该催化机理以Fe0/Fe3O4/RGO 协同作用使≡Fe2+ 再生恢复为核心。Fe0纳米颗粒和Fe3O4 纳米颗粒在纳米尺度被均匀的分散在RGO上,使更多的活性位点暴露于载体的表明。而RGO作为电子转移介质可以有效促进电子由Fe0 转移给Fe3O4 使得≡Fe2+得到再生。苯酚分子与RGO之间的π-π作用使得苯酚分子可以有效的吸附在催化剂表面,增加了苯酚分子与•OH接触的几率。基于这些因素,使得 Fe0/Fe3O4-RGO 具有优异的类Fenton催化活性。 

  相关研究成果已申报中国发明专利,并于近期发表在RSC Advances上。这种可磁分离、高催化活性、可多次重复利用的纳米催化剂的设计,为采用类芬顿反应氧化降解有机污染物催化剂的设计提供了一种新的设计思路。 

  该研究工作得到国家自然科学基金、千人计划、新疆青年科技创新人才-杰出青年科学基金等项目的支持。 

 

 

 

 

附件下载
相关新闻
欢迎访问中国科学院新疆理化技术研究所网站 新ICP备06001362号
地址:新疆乌鲁木齐市北京南路40-1号  邮编:830011  咨询、建议电话:0991-3835823 传 真:0991-3838957